Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw
نویسندگان
چکیده
BACKGROUND The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments. RESULTS The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140°C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140°C. Surface response models revealed significantly correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin. CONCLUSIONS Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T ≤ 140°C, time ≤ 10 min). Alkaline pretreatments generally induced higher enzymatic glucose and xylose release and did so at lower pretreatment temperatures than required with acidic pretreatments.
منابع مشابه
Lignocellulose pretreatment severity - relating pH to biomatrix opening.
In cellulose-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic feedstock is a crucial prerequisite for increasing the amenability of the cellulose to enzymatic attack. Currently published pretreatment strategies span over a wide range of reaction conditions involving different pH values, temperatures, types of catalysts and holding times. The consequences of the pretre...
متن کاملCombined Severity during Pretreatment Chemical and Temperature on the Saccharification of Wheat Straw using Acids and Alkalis of Differing Strength
Acids and alkalis are considered important catalysts in biomass pretreatment, which is essential to overcome the recalcitrance of lignocellulose for sugar release. In this study, the effects of various chemicals and temperatures on the pretreatment and subsequent enzymatic hydrolysis of wheat straw were investigated. The conversions of glucan and xylan during pretreatment and enzymatic hydrolys...
متن کاملEnhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment
Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...
متن کاملStrategy to Utilize the High Ash Content Biomass Feedstock for Fermentable Sugars
A prewashing step was used to remove ash from straw pulping solid residue (waste wheat straw, WWS) prior to pretreatment and enzymatic hydrolysis. The effects of prewashing on the effectiveness of liquid hot water pretreatment (LHWP) and dilute acid pretreatment (DAP) were investigated. Prewashing effectively removed the ash in raw WWS. However, a certain amount of polysaccharides was also remo...
متن کاملBiorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.
This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-is...
متن کامل